Dynamics of Josephson Vortices in Layered Superconductors A. Koshelev^a, U. Welp^a, K. Gray^a, T. Tachiki^a, C. Kurter^a, V.Vlasko-Vlasov^a, W.Kwok^a, M. Tachiki^b, K. Kadowaki^b, Yu. Latyshev^c, L. Bulaevskii^d, and L. Ozyuser^e ^a Materials Science Division, Argonne National Laboratory, ^b University of Tsukuba, Japan, ^c IREE, Moscow, Russia, ^d Los Alamos National Laboratory, ^e Izmir Institute of Technology, Turkey #### Motivation - Intrinsic Josephson effect in layered high-T_c superconductors - → Josephson vortices for H || ab - · Low dissipation of Josephson vortices - can move at very high velocities - → source of powerful electromagnetic wave - · Potential for high-frequency applications - · Rich dynamic behavior #### **Recent Achievements** #### Controlling dynamics of Josephson-vortex lattice using pancake vortices - PV stacks are the most efficient pinners for Josephson vortices (JVs) - Oscillations of pancake vortices (PVs) due to motion of JVs - → large contribution to JV dissipation Zigzag deformation of PV stack by dense JV lattice Stack of Josephson junctions prepared from BSCCO whisker using FIB (Yu. Latyshev) #### Nonmonotonic excess current δI(U): - · Probes relaxation frequency of PVs. - Leads to jumps in IVs and angular dependencies of voltage measured at fixed current. ## Critical Current oscillations in finite-size stacks Single small junction, $L < \lambda_j$: Fraunhofer dependence $J_c(\Phi) = J_J \frac{\left| \sin(\pi \Phi/\Phi_0) \right|}{\pi \Phi/\Phi_0}$ ## Stack of Josephson junctions Dense JV lattice:B > $B_{cr} = \Phi_0/2\pi s \lambda_J$ Size-dependent competition: Interaction with boundaries Shear interaction between planar JV arrays #### Short stack: - Φ₀-oscillations - "almost Fraunhofer" rectangular lattice - (except near Φ =j Φ_0) ## Long stack: - triangular lattice - alternating surface deformation - decay length L_B = λ_J B/B_{cr} - J_c = edge currents - Φ₀/2-oscillations <u>Crossover</u> between the stack regimes with increasing magnetic field at $B \sim B_L = B_{cr} L / \lambda_J$ Experiment (flux-flow oscillations): Kakeya *et al.*, cond-mat/0503498 ## **Future directions** ## Extraction of THz-radiation from BSCCO mesas: - · 2nd order grating - matching of wavelength of Josephson plasma wave and free-space radiation - · emission from large top surface ## **Open Problems:** - · Steady states and their stability in small-size stacks - · regions of rectangular lattice - · Synchronization by external em wave - Influence of fluctuating pancake stacks on dynamics of Josephson vortices